Key steps in assessment thinking

- The notion of compromise
 - The notion of programs of assessment
 - Combined purposeful optimization
 - A model
 - Bias reduction
 - An example
 - Conclusion
Characteristics of instruments

- Reliability (R)
- Validity (V)
- Educational impact (E)
- Acceptability (A)
- Cost (C)
Utility function

\[U = w_r R \times w_v V \times w_e E \times w_a A \times w_c C \]

- U = Utility
- R = Reliability
- V = Validity
- E = Educational impact
- A = Acceptability
- C = Cost
- W = Weight
Where do we compromise?

- Everywhere!
Validity

- Standardized summative testing is the dominant assessment practice at lower levels of Miller’s pyramid

Not everything that counts can be measured. Not everything that can be measured counts.

Albert Einstein
The assessment program

- An arrangement of a purposeful collection of assessment moments, i.e. assessment data points
- The sum is more than the whole
- Should be aligned to the curriculum objectives
- Should foster learning and decision making
- Should combine purposeful compromises.
A model of programmatic assessment

Assumptions:
- Every individual method is but one (flawed) data point
- Stakes replaces the formative/summative distinction and is a continuum
- N of data points should be proportional to stakes
- Learning model is student-centered, longitudinal, holistic and self-directed.
Artifacts of learning
- Outcome artifacts: Products of learning tasks
- Process artifacts: Learning or working activities

Learning task
- PBL case
- Patient encounter
- Operation
- Project
- Lecture
- Self-study
Certification of mastery-oriented learning tasks
- Resuscitation
- Normal delivery of infant

Individual data points of assessment
- Fit for purpose
- Multiple/all levels of Miller
- Learning oriented, Information rich documentation, meaningful (quantitative, qualitative)
- Low stake
Time

Assessment Activities

Training Activities

Supporting Activities

(P)Reflective activity by learner
- Interpretation of feedback
- Planning new learning objectives and tasks

Supportive social interaction
- Coaching/mentoring/supervision
- Peer interaction (intervision)
Firewall dilemma
- Dilemma between access to rich information and compromising relationship supporting person(s) and learner

Intermediate evaluation
- Aggregate information held against performance standard
- Committee of examiners
- Decision making: diagnostic, therapeutic, prognostic
- Remediation oriented, not repetition oriented
- Informative
- Longitudinal
- Intermediate stake
<table>
<thead>
<tr>
<th>Time</th>
<th>Training Activities</th>
<th>Assessment Activities</th>
<th>Supporting Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>△ △ △ △ △ △ △ △ △</td>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td></td>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>△ △ △ △ △ △ △ △ △</td>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○</td>
</tr>
<tr>
<td></td>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○</td>
<td>△ △ △ △ △ △ △ △ △</td>
<td>○ ○ ○ ○ ○ ○ ○ ○ ○</td>
</tr>
</tbody>
</table>

Legend:
- ○: Normal activity
- △: Important activity
- △: Critical activity

Notes:
- The diagram shows the distribution of training, assessment, and supporting activities over time.
- Critical activities are highlighted in blue.
- The green bar indicates a specific time frame or period.

Time Arrow:
- The time arrow points right, indicating movement through time.
Final evaluation

- Aggregate information held against performance standard
- Committee of examiners
- Pass/fail/(distinction) high stake decision
- Based on many data points and rich information
- Decision trustworthiness optimized through procedural measures, inspired qualitative methodology strategies
- High stake
<table>
<thead>
<tr>
<th>Time</th>
<th>Training Activities</th>
<th>Assessment Activities</th>
<th>Supporting Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

![Diagram of activities over time](chart.png)

- **Training Activities**
- **Assessment Activities**
- **Supporting Activities**
How to deal with subjectivity?

- Expert judgment is imperative for assessing complex competencies and when diverse information is to be combined.
- Sampling strategies can reduce random error.
- Procedural strategies can reduce bias.
<table>
<thead>
<tr>
<th>Strategy to establish trustworthiness</th>
<th>Criteria</th>
<th>Potential Assessment Strategy (sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credibility</td>
<td>Prolonged engagement</td>
<td>Training of examiners</td>
</tr>
<tr>
<td></td>
<td>Triangulation</td>
<td>Tailored volume of expert judgment based on certainty of information</td>
</tr>
<tr>
<td></td>
<td>Peer examination</td>
<td>Benchmarking examiners</td>
</tr>
<tr>
<td></td>
<td>Member checking</td>
<td>Incorporate learner view</td>
</tr>
<tr>
<td></td>
<td>Structural coherence</td>
<td>Scrutiny of committee inconsistencies</td>
</tr>
<tr>
<td>Transferability</td>
<td>Time sampling</td>
<td>Judgment based on broad sample of data points</td>
</tr>
<tr>
<td></td>
<td>Thick description</td>
<td>Justify decisions</td>
</tr>
<tr>
<td>Dependability</td>
<td>Stepwise replication</td>
<td>Use multiple assessors who have credibility</td>
</tr>
<tr>
<td>Confirmability</td>
<td>Audit</td>
<td>Give learners the possibility to appeal to the assessment decision</td>
</tr>
</tbody>
</table>